s_{i}

Extreme weather as the architect
Down the ages, rooftop design styles in china have refiected aimate change

M

 The remaining sianso of pats climatae seare ollyythe
rates of tree growth or the stalagmite precipita-
 from Nanjing University and the Collabo-
rative In novative Cere for Climate
Change, Nanjing, and the Chinese Academy Association for the watteancement of sci-
ence journal, Science Advances, of the design of rooftops in China, down the ages,
as another indicator of changes in snow-
fall. Apart from being one more instrument in the climate scientist's toolbox, it could
bring the spotlight on architecture as a face today.

LOOKING AT THE ENDS OF THE UNIVERSE

An astronomer on the James Weblb Space Telescope team explains how to send a giant telescope to space, and why

The region is a semi-humid area and the climate
is sensitively affected by several factors, which include the summer and winter monsoons, the
cold-dry air from the North-west and warm-wet air from the South-east. As a result, conditions in
the region respond sharply to climatic fluctuations, which would bring out emphatically the
effects of climate change on social life, and hence on architecture, the paper says.
The sloping and curved roofs, a distinctive feature of traditional Chinese architecture, are based on underlying traditions of the bean
structure used in construction. Hence although structure used in construction. Hence, although
there would be differences according to social there would be differences according to social
hierarchy and aesthetics, the basic form would be maintained. And so, they are, in China, the paper says, since prehistoric times to the pre-
sent. Despite this constant basic form, howeve, there have been significant modifications from time to time, and those, the paper says, are
revealing of particular aspects of the periods. The paper explains that the sloping struc-
The of en ture has to do with the function of roofs to pro-
tect the dwelling from snow. The cost of the tect the dwelling from snow. The cost of the
structure depends both on the load of snow the structure depends both on the load of snow the
roof must bear, and the material used in build-
ing a steep slope. Roofs that tace lighter snowfall ing a steep slope. Roofs that face lighter snowfall
can make do with a shallow slope, but if there is heavy snowfall, the snow needs to slide off before it builds up. The slope hence needs to be
steeper. As a steeper slope costs more, it would be provided only where snowfall is expected to
roof, one where the height to span ratio,
is low and the other with a steeper slope. The intensity of snowfall during the period
between 950 and 1750 CE was estimated using a
combination of data and ata combination of data and statistical methods.
One step in the estimation was to use the available, current data to estimate the relationship

China. And, as the topography of the region has not changed, it is considered that the relation-
ship in past centuries would be the same as a present.
Next, the temperature data for the past
period was accessed from a published study period was accessed from a pubished stady
based on historical data and statistical analysis.
The data is of plant and animal cycles affected The data is of plant and animal cycles affected
by cold/ warm events, and analysis links the data
with available temperature information to pro with available temperature information, to pro-
ject temperatures where other data is not available. Such projections, which have been cross
verified, are fine-grained and show variations across periods as narrow as $10-30$ years. By com-
bining that information with the current rela-
tionship between temperature and snowfall, it has been possible to arrive at the ancient snow-
fall intensity with the same $10-30$-year resoluThat done, the data of snowfall over the
centuries was compared with the roof slope of centuries was compared with the roof slope of
some 200 remains of structures in the region of some 200 remains of shuctur the
the study. And it was found that the or the
measure of ow step the slope of the roof was measure of how steep the slope of the roof was,
clearly increased or fell, in step with the rise and
fall of the intensity of snowfall. Figure two shows the rise and fall of steep-
ness of the slope, and the rise and fall of the difference in temperature from the mean, over the period from 950 to 1750 CE. And we can see that
both measures vary in the same way. In cold periods, the paper says, "Roofs became steeper
$(1100-1200$ CE and $1300-1750$ CE, which corre sponds to the "Little Ice Age"), whereas, in warm Warm Period" in Europe)." The paper points out that the roof slope lags the snowfall by 30 years, as it takes some time for construction methods
to adapt to changes in severity of the winter "The responses of roof modification to the
climatic fluctuations indicate an intelligent long-term adaptive behaviour of the ancient
Chinese. They adjusted their buildings for a more stable and suitable roof formation when faced with various weather extremes caused by climate change," the paper says. The data we
have of roof architecture is more exact than the estimates of temperature that we have made
The exact HSR information can hence be used to refine the quality of temperature data, and in The study underlines
The study underlines the need, the paper
says, for architects to consider the rapid climate change and frequency of extreme events that
we now face. Designs hence need to be both we now face. Designs hence need to be both
sustainable as well as future-proof, as we may sustainable as well as future-prop. The writer can be contracted at
 ments in steps measured in billionths of a mes tion, we will confirm that telescope alignment is perfect. This task is so mission critical that there
are two identical copies of Nircam on board -if are two identical copies of Nircam on board - if
one fails, the other can take over the alignment
job. This alignment and checkout proces
will begin collecting data. After 20 years of work peer into the farthest, most distant reaches of

The writer is Regents professor of astronomy, University
of rarizona, united states. This article first appeared on
whwone

Frogs to the
rescue

Amphibian foam has been used in drug delivery for the first time, in research
which could help combat the rise of antimicrobial resistance.
Researchers from the University of Strathclyde, Queen's University Belfast,
Glasgow Caledonian University and the University of Glasgow in the United Kingdom discovered that the foam,
found in frogs' nests, has the potential to found in frogs' nests, has the potential to
offer benefits to topical, vaginal and rec tal drug delivery, and in cases such as the treatment of burns. It provides a
controlled-release delivery whic min controlled-release delivery, which min-
mises risk of infection and antimicro bial resistance, while being very com patible with skin and tissue.
Industrial foams have long been sed ortions but there is high variability n the foamability and long-term stabil ity of synthetic foams. The research has
been published in the journal boen publy Open Science.
Profer
Possisson, of th Professor Paul Hoskisson, of the
Strathclyde Institute of Pharmacy and said, "This is the first time amphibian foam has been used for drug delivery. It cle that could be administered to patients without any fear of making
them sick, unlike many of the other synthetic celivery vehicles.
"We are now looking at reproduc ing the exact foam in the laboratory and investigating the types of drugs that lend delivery", The researchers collected foam The researchers collected foam
from wild Túngara frogs, which is made from wid secies to protect its eggs and
by the
tadpoles from the elements in its native Trinidad, including extreme tempera As the foam offered protection in researchers hypothesised that it could system for drug delivery and carried out laboratory tests to assess its structure
and composition. The researchers also made nanoparticles to deliver drugs made nanoparticles to deliver drug
through the foam and found that it
released the compounds slowly whil

Ancient penguins

unusual long-legged giant penguin, firs Zealand, belonged to a previously In 2006, the group of schoolchild ren, who were taking part in an organ
ised fossil hunting field trip, discovered the giant set of fossilised penguin bones in Kawhia Harbour, in the Waikato
region of New Zealand's North Island. region of New Zealand's North Island
The fossils were recovered from th sandstone rock soon afterwards and 2017. ${ }^{\text {New analysis of the bones, using 3D }}$ scanning, enabled the research team,
from Massey University in New Zealand
and Bruce Museum in Connecticut, and Bruce Museum in Connecticut
United States, to produce a United States, to produce a 3D-printed
replica of the skeleton, and found the repenguin would have stood at around
4.60 feet tall. In comparison, the tallest penguin species alive
Daniel Thomas, a senior lecturer in zoology from Massey's School of Natura
and Computational Sciences, New Zealand, said the fossil is between 27.3
and 34.6 million years old and is from ime when much of the Waikato wa

| Steffan Safey, who was there fo |
| :--- | satid, "It's sort of surreal to know that a

discovery we made as kids so many ears ago is contributing to academi The research is published in
Journal of Vertebrate Paleontology.

